Immobilized enzyme microreactors for analysis of tryptic peptides in β-casein and β-lactoglobulin

6Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, our primary objective was to develop an effective analytical method for studying trypsin-digested peptides of two proteins commonly found in cow's milk: β-casein (βCN) and β-lactoglobulin (βLG). To achieve this, we employed two distinct approaches: traditional in-gel protein digestion and protein digestion using immobilized enzyme microreactors (μ-IMER). Both methods utilized ZipTip pipette tips filled with C18 reverse phase media for sample concentration. The μ-IMER was fabricated through a multi-step process that included preconditioning the capillary, modifying its surface, synthesizing a monolithic support, and further surface modification. Its performance was evaluated under HPLC chromatography conditions using a small-molecule trypsin substrate (BAEE). Hydrolysates from both digestion methods were analyzed using MALDI-TOF MS. Our findings indicate that the μ-IMER method demonstrated superior sequence coverage for oxidized molecules in βCN (33 ± 1.5%) and βLG (65 ± 3%) compared to classical in-gel digestion (20 ± 2% for βCN; 49 ± 2% for βLG). The use of ZipTips further improved sequence coverage in both classical in-gel digestion (26 ± 1% for βCN; 60 ± 4% for βLG) and μ-IMER (41 ± 3% for βCN; 80 ± 5% for βLG). Additionally, phosphorylations were identified. For βCN, no phosphorylation was detected using classical digestion, but the use of ZipTips showed a value of 27 ± 4%. With μ-IMER and μ-IMER–ZipTip, the values increased to 30 ± 2% and 33 ± 1%, respectively. For βLG, the use of ZipTip enabled the detection of a higher percentage of modified peptides in both classical (79 ± 2%) and μ-IMER (79 ± 4%) digestions. By providing a comprehensive comparison of traditional in-gel digestion and μ-IMER methods, this study offers valuable insights into the advantages and limitations of each approach, particularly in the context of complex biological samples. The findings set a new benchmark in protein digestion and analysis, highlighting the potential of μ-IMER systems for enhanced sequence coverage and post-translational modification detection.

Cite

CITATION STYLE

APA

Rodzik, A., Railean, V., Pomastowski, P., Buszewski, B., & Szumski, M. (2023). Immobilized enzyme microreactors for analysis of tryptic peptides in β-casein and β-lactoglobulin. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43521-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free