Abstract
The glycation of BSA leads to protein/peptide modifications that result in the formation of AGEs. AGEs react with the amino groups of N-terminal amino acid residues, particularly arginine and lysine residues. Enhanced AGE formation exists in the blood and tissues of diabetics, as well as in aging and other disorders. The Identification of AGEs is of great importance. Mass spectrometry has been applied to identify and structurally elucidate AGEs. Here, we report on the identification of AGE- peptides and AGE-precursors based on relative mass changes as a result of specific AGE formation. HPLC-ESIMS, ESI-MS/MS, and the Mascot database were used. The relative mass changes due to the specific type of AGE formation were added to the identified peptides followed by a manual search of the glycated samples, which resulted in the identification of seven peptides for the formation of five AGEs, namely CML, pyrraline, imidazolone A, imidazolone B, and AFGP. Four glycated peptides (FPK, ECCDKPLLEK, IETMR, and HLVDEPQNLIK) were identified in the formation of AGE-precursors.
Author supplied keywords
Cite
CITATION STYLE
Ahmad, W., Li, L., & Deng, Y. (2008). Identification of AGE-precursors and AGE formation in glycation-induced BSA peptides. Journal of Biochemistry and Molecular Biology, 41(7), 516–522. https://doi.org/10.5483/bmbrep.2008.41.7.516
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.