Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

27Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

Cite

CITATION STYLE

APA

Ford, W. I., Fox, J. F., & Pollock, E. (2017). Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams. Water Resources Research, 53(8), 6539–6561. https://doi.org/10.1002/2017WR020607

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free