Abstract
Tumor cell vaccination with irradiated autologous tumor cells is a promising approach to activate tumor-specific T cell responses without the need for tumor Ag identification. However, uptake of dying cells by dendritic cells (DCs) is generally a noninflammatory or tolerizing event to prevent the development of autoreactive immune responses. In this study, we describe the mechanisms that confer the potent T cell priming capacity of a recently identified a population of DCs (merocytic DCs [mcDCs]) that potently primes both CD8+ and CD4+ T cells to cell-associated Ags upon uptake of apoptotic cells. mcDCs acquired cell-associated materials through a process of merocytosis that is defined by the uptake of small particles that are stored in nonacidic compartments for prolonged periods, sustained Ag presentation, and the induction of type I IFN. T cells primed by mcDCs to cell-associated Ags exhibit increased primary expansion, enhanced effector function, and increased memory formation. By using transgenic T cell transfer models and endogenous models, we show that treatment of tumor-bearing mice with mcDCs that have been exposed to dying tumor cells results in tumor suppression and increased host survival through the activation of naive tumor-specific CD8+ T cells as well as the reinvigoration of tumor-specific T cells that had been rendered nonresponsive by the tumor in vivo. The potent capacity of mcDCs to prime both CD4+ and CD8+ T cells to cell-associated Ags under immunosuppressive conditions makes this DC subset an attractive target for tumor therapies as well as interventional strategies for autoimmunity and transplantation.
Cite
CITATION STYLE
Reboulet, R. A., Hennies, C. M., Garcia, Z., Nierkens, S., & Janssen, E. M. (2010). Prolonged Antigen Storage Endows Merocytic Dendritic Cells with Enhanced Capacity To Prime Anti-Tumor Responses in Tumor-Bearing Mice. The Journal of Immunology, 185(6), 3337–3347. https://doi.org/10.4049/jimmunol.1001619
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.