A comprehensive workflow for automating thematic map geovisualization from univariate big geospatial point data

  • Pillay L
  • Schaab G
  • Coetzee S
  • et al.
N/ACitations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Abstract. The increase in massive volumes of point data that are continuously being generated calls for more powerful solutions to analyze and explore this data. Very often, such data includes a direct or indirect reference to a location on the Earth and can then be referred to as ‘big geospatial data’. Maps are one of the best ways to assist humans with understanding geospatial relationships in such data. In this paper, we present a comprehensive workflow for generating all possible thematic map types from two-dimensional univariate big geospatial point data. The objective is twofold: to facilitate and support thematic map automation, and to make this information accessible to software developers. The workflow illustrates processing steps, design choices and dependencies between them based on the characteristics of input data. Processing steps and design choices that can be automated and those requiring human intervention are identified. The scope of the workflow in this paper was restricted to two-dimensional univariate geospatial point data and planar and true geometrical map depictions. The results presented in this paper support the development of geovisualization and geovisual analytics tools for big geospatial data.

Cite

CITATION STYLE

APA

Pillay, L., Schaab, G., Coetzee, S., & Rautenbach, V. (2019). A comprehensive workflow for automating thematic map geovisualization from univariate big geospatial point data. Proceedings of the ICA, 2, 1–8. https://doi.org/10.5194/ica-proc-2-100-2019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free