Correct classification of fractures according to their patterns is critical for developing a treatment plan in orthopaedic surgery. Unfortunately, for proximal humeral fractures (PHF), methods for proper classification have remained a jigsaw puzzle that has not yet been fully solved despite numerous proposed classifications and diagnostic methods. Recently, many studies have suggested that three-dimensional printed models (3DPM) can improve the interobserver agreement on PHF classifications. Moreover, Virtual Reality (VR) has not been properly studied for classification of shoulder injuries. The current study investigates the PHF classification accuracy relative to an expert committee when using either 3DPM or equivalent models displayed in VR among 36 orthopaedic surgery residents from different hospitals. We designed a multicentric randomised controlled trial in which we created two groups: a group exposed to a total of 34 3DPM and another exposed to VR equivalents. Association between classification accuracy and group assignment (VR/3DPM) was assessed using mixed effects logistic regression models. The results showed VR can be considered a non-inferior technology for classifying PHF when compared to 3DPM. Moreover, VR may be preferable when considering possible time and resource savings along with potential uses of VR for presurgical planning in orthopaedics.
CITATION STYLE
Almirón Santa-Bárbara, R., García Rivera, F., Lamb, M., Víquez Da-Silva, R., & Gutiérrez Bedmar, M. (2023). New technologies for the classification of proximal humeral fractures: Comparison between Virtual Reality and 3D printed models—a randomised controlled trial. Virtual Reality, 27(3), 1623–1634. https://doi.org/10.1007/s10055-023-00757-4
Mendeley helps you to discover research relevant for your work.