Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencing

32Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

Antibody specificity and diversity are generated through the enzymatic splicing of genomic gene segments within each B cell. Antibodies are heterodimers of heavy- and light-chains encoded on separate loci. We studied the antibody repertoire from pooled, splenic tissue of unimmunized, adult female C57BL/6J mice, using high-throughput sequencing (HTS) without amplification of antibody transcripts. We recovered over 90,000 heavy-chain and over 135,000 light-chain immunoglobulin sequences. Individual V-, D-, and J-gene segment usage was uniform among the three mouse pools, particularly in highly abundant gene segments, with low frequency V-gene segments not being detected in all pools. Despite the similar usage of individual gene segments, the repertoire of individual B-cell CDR3 amino acid sequences in each mouse pool was highly varied, affirming the combinatorial diversity in the B-cell pool that has been previously demonstrated. There also was some skewing in the V-gene segments that were detected depending on chromosomal location. This study presents a unique, non-primer biased glimpse of the conventionally housed, unimmunized antibody repertoire of the C57BL6/J mouse.

Cite

CITATION STYLE

APA

Rettig, T. A., Ward, C., Bye, B. A., Pecaut, M. J., & Chapes, S. K. (2018). Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencing. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0190982

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free