Integrated system for autonomous proximity operations and docking

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the statedependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A sixdegree of freedom simulation was used to demonstrate the effectiveness of the integrated system. © The Korean Society for Aeronautical & Space Sciences.

Cite

CITATION STYLE

APA

Lee, D., & Pernicka, H. (2011). Integrated system for autonomous proximity operations and docking. International Journal of Aeronautical and Space Sciences, 12(1), 43–56. https://doi.org/10.5139/IJASS.2011.12.1.43

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free