Pollen-Inspired Photonic Barcodes with Prickly Surface for Multiplex Exosome Capturing and Screening

  • Li N
  • Bian F
  • Wei X
  • et al.
16Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Exosomes, which play an important role in intercellular communication, are closely related to the pathogenesis of disease. However, their effective capture and multiplex screening are still challenging. Here, inspired by the unique structure of pollens, we present novel photonic crystal (PhC) barcodes with prickly surface by hydrothermal synthesis for multiplex exosome capturing and screening. These pollen-inspired PhC barcodes are imparted with extremely high specific surface area and excellent prickly surface nanostructures, which can improve the capture rate and detection sensitivity of exosomes. As the internal periodic structures are kept during the hydrothermal synthesis process, the pollen-inspired PhC barcodes exhibit obvious and stable structural colors for identification, which enables multiplex detection of exosomes. Thus, the pollen-inspired PhC barcodes can not only effectively capture and enrich cancer-related exosomes but also support multiplex screening of exosomes with high sensitivity. These features make the prickly PhC barcodes ideal for the analysis of exosomes in medical diagnosis.

Cite

CITATION STYLE

APA

Li, N., Bian, F., Wei, X., Cai, L., Gu, H., Zhao, Y., & Shang, L. (2022). Pollen-Inspired Photonic Barcodes with Prickly Surface for Multiplex Exosome Capturing and Screening. Research, 2022. https://doi.org/10.34133/2022/9809538

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free