Abstract
A high-temperature proton exchange membrane fuel cell (HT-PEMFC) conventionally uses a planar design with carbon-based substrates as the gas diffusion layer (GDL) materials. However, the metal-based substrates allow for alternative designs. In this study, the applicability of porous thin-walled tubular elements made of 316L stainless steel as the anode GDL in a multi-layer tubular HT-PEMFC was investigated. The anode GDLs were fabricated via powder bed fusion using a laser beam (PBF-LB) process with defined porosities (14% and 16%). The morphology of the porous elements was compared using scanning electron microscopy (SEM) micrographs. The influence of the porosity on the fuel cell performance was evaluated through electrochemical characterization and a short-term stability test (45 h) in a commercial test station operated at 160 °C and ambient pressure, using hydrogen as the fuel and air as the oxidant. The results showed that the fuel cell manufactured upon the anode GDL with a porosity of 16% had a higher performance with a peak power density of 329.25 W/m2 after 5 h of operation at 125.52 A/m2 and a voltage degradation rate of 0.511 mV/h over the stability test period. Moreover, this work indicates that additive manufacturing could be a useful tool for further fuel cell development.
Author supplied keywords
Cite
CITATION STYLE
Agudelo, M. C. B., Hampe, M., Reiber, T., & Abele, E. (2020). Investigation of porous metal-based 3D-printed anode GDLs for tubular high temperature proton exchange membrane fuel cells. Materials, 13(9). https://doi.org/10.3390/ma13092096
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.