Impact of hydrogenation on the stability and mechanical properties of amorphous boron nitride

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Interconnect materials with ultralow dielectric constant, and good thermal and mechanical properties are crucial for the further miniaturization of electronic devices. Recently, it has been demonstrated that ultrathin amorphous boron nitride (aBN) films have a very low dielectric constant, high density (above 2.1 g cm−3), high thermal stability, and mechanical properties. The excellent properties of aBN derive from the nature and degree of disorder, which can be controlled at fabrication, allowing tuning of the physical properties for desired applications. Here, we report an improvement in the stability and mechanical properties of aBN upon hydrogen doping. With the introduction of a Gaussian approximation potential for atomistic simulations, we investigate the changing morphology of aBN with varying H doping concentrations. We found that for 8 at% of H doping, the concentration of sp 3-hybridized atoms reaches to a maximum which leads to an improvement of thermal stability and mechanical properties by 20%. These results will be a guideline for experimentalists and process engineers to tune the growth conditions of aBN films for numerous applications.

Cite

CITATION STYLE

APA

Kaya, O., Colombo, L., Antidormi, A., Villena, M. A., Lanza, M., Cole, I., & Roche, S. (2024). Impact of hydrogenation on the stability and mechanical properties of amorphous boron nitride. JPhys Materials, 7(2). https://doi.org/10.1088/2515-7639/ad367b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free