Background: Germ cell tumours (GCTs) represent a highly curable malignity as they respond well to cisplatin (CDDP)-based chemotherapy. Nevertheless, a small proportion of GCT patients relapse or do not respond to therapy. As this might be caused by an increased capacity to repair CDDP-induced DNA damage, identification of DNA repair biomarkers predicting inadequate or aberrant response to CDDP, and thus poor prognosis for GCT patients, poses a challenge. The objective of this study is to examine the expression levels of the key nucleotide excision repair (NER) factors, XPA, ERCC1 and XPF, in GCT patients and cell lines. Methods: Two hundred seven GCT patients' specimens with sufficient follow-up clinical-pathological data and pairwise combinations of CDDP-resistant and -sensitive GCT cell lines were included. Immunohistochemistry was used to detect the ERCC1, XPF and XPA protein expression levels in GCT patients' specimen and Western blot and qRT-PCR examined the protein and mRNA expression levels in GCT cell lines. Results: GCT patients with low XPA expression had significantly better overall survival than patients with high expression (hazard ratio = 0.38, 95% confidence interval: 0.12-1.23, p = 0.0228). In addition, XPA expression was increased in the non-seminomatous histological subtype, IGCCCG poor prognosis group, increasing S stage, as well as the presence of lung, liver and non-pulmonary visceral metastases. Importantly, a correlation between inadequate or aberrant CDDP response and XPA expression found in GCT patients was also seen in GCT cell lines. Conclusions: XPA expression is an additional independent prognostic biomarker for stratifying GCT patients, allowing for improvements in decision-making on treatment for those at high risk of refractoriness or relapse. In addition, it could represent a novel therapeutic target in GCTs.
CITATION STYLE
Cierna, Z., Miskovska, V., Roska, J., Jurkovicova, D., Pulzova, L. B., Sestakova, Z., … Chovanec, M. (2020). Increased levels of XPA might be the basis of cisplatin resistance in germ cell tumours. BMC Cancer, 20(1). https://doi.org/10.1186/s12885-019-6496-1
Mendeley helps you to discover research relevant for your work.