Abstract
L-783,281, an antidiabetic fungal metabolite that has previously been shown to activate insulin signaling in CHO cells, was tested for its effect on intracellular Ca2+ ([Ca2+]i) and insulin secretion in single mouse pancreatic β-cells. Application of 10 μmol/l L-783,281 for 40 s to isolated β-cells in the presence of 3 mmol/l glucose increased [Ca2+]i to 178 ± 10% of basal levels (n = 18) as measured by fluo-4 fluorescence. L-767,827, an inactive structural analog of the insulin mimetic, had no effect on β-cell [Ca2+]i. The L-783,281-evoked [Ca2+]i increase was reduced by 82 ± 4% (n = 6, P < 0.001) in cells incubated with 1 μmol/l of the SERCA (sarco/endoplasmic reticulum calcium ATPase) pump inhibitor thapsigargin and reduced by 33 ± 6% (n = 6, P < 0.05) in cells incubated with 20 μmol/l of the L-type Ca2+- channel blocker nifedipine. L-783,281-stimulated [Ca2+]i increases were reduced to 31 ± 3% (n = 9, P < 0.05) and 48 ± 10% (n = 6, P < 0.05) of control values by the phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 (25 μmol/l) and wortmannin (100 nmol/l), respectively. In β-cells from IRS-1-/- mice, 10 μmol/l L-783,281 had no significant effect on [Ca2+]i (n = 5). L-783,281 also resulted in insulin secretion at single β-cells. Application of 10 μmol/l L-783,281 for 40 s resulted in 12.2 ± 2.1 (n = 14) exocytotic events as measured by amperometry, whereas the inactive structural analog had no stimulatory effect on secretion. Virtually no secretion was evoked by L-783,281 in IRS-1-/- β-cells. LY294002 (25 μmol/l) significantly reduced the effect of the insulin mimetic on β-cell exocytosis. It is concluded that L-783,281 evokes [Ca2+]i increases and exocytosis in β-cells via an IRS-1/PI3-K-dependent pathway and that the [Ca2+]i increase involves release of Ca2+ from intracellular stores.
Cite
CITATION STYLE
Roper, M. G., Qian, W. J., Zhang, B. B., Kulkarni, R. N., Ronald Kahn, C., & Kennedy, R. T. (2002). Effect of the insulin mimetic L-783,281 on intracellular [Ca2+] and insulin secretion from pancreatic β-cells. In Diabetes (Vol. 51). American Diabetes Association Inc. https://doi.org/10.2337/diabetes.51.2007.s43
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.