Electrochemistry-based battery modeling for prognostics

88Citations
Citations of this article
112Readers
Mendeley users who have this article in their library.

Abstract

Batteries are used in a wide variety of applications. In recent years, they have become popular as a source of power for electric vehicles such as cars, unmanned aerial vehicles, and commericial passenger aircraft. In such application domains, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. To implement such technologies, it is crucial to understand how batteries work and to capture that knowledge in the form of models that can be used by monitoring, diagnosis, and prognosis algorithms. In this work, we develop electrochemistry-based models of lithium-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles. This paper reports on the progress of such a model, with results demonstrating the model validity and accurate EOD predictions.

Cite

CITATION STYLE

APA

Daigle, M., & Kulkarni, C. S. (2013). Electrochemistry-based battery modeling for prognostics. In PHM 2013 - Proceedings of the Annual Conference of the Prognostics and Health Management Society 2013 (pp. 249–261). Prognostics and Health Management Society. https://doi.org/10.36001/phmconf.2013.v5i1.2252

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free