Abstract
The objective of the present study was to evaluate a novel film forming biomaterial for its potential application in the preparation of unilaminate transdermal adhesive matrix systems. The biomaterial, Damar Batu (DB), was tried alone and in combination with Eudragit RL100 as a matrixing agent in the preparation of transdermal patches. Developed transdermal patches of Diltiazem hydrochloride (DH) were evaluated for thickness uniformity, weight uniformity, folding endurance and drug content. USP dissolution apparatus V was used for in vitro drug release studies. Modified Franz diffusion cell used for permeation study using excised human cadaver skin. Total 6 formulations were developed and on the basis of in vitro drug release and in vitro skin permeation profile F5 composed of DB: Eudragit RL100 (60:40) and carrying 20 %w/w DH was selected as an optimized formulation for in vivo study. The in vivo study results showed that F5 achieved the Cmax of about 269.76 ± 1.52 ng/mL in 6 h and sustained the release of the drug till 24 h. The skin irritation study results proved that the novel biomaterial is non-sensitizing and non-irritating. Drug-polymer interaction study carried out to check the compatibility of drug and polymer showed the intactness of the drug in the formulation proving the compatibility of the polymer. It can be proposed from the outcome of the present study that by applying suitable adhesive layer and backing membrane, DB: Eudragit RL100 (60:40) transdermal patches can be of potential therapeutic use. © 2011 Informa Healthcare USA, Inc.
Author supplied keywords
Cite
CITATION STYLE
Mundada, A. S., & Avari, J. G. (2011). Novel biomaterial for transdermal application: In vitro and in vivo characterization. Drug Delivery, 18(6), 424–431. https://doi.org/10.3109/10717544.2011.577107
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.