Projected climatic and hydrologic changes to Lake Victoria Basin Rivers under three RCP emission scenarios for 2015-2100 and impacts on the water sector

36Citations
Citations of this article
135Readers
Mendeley users who have this article in their library.

Abstract

Rivers in the Lake Victoria Basin support a multitude of ecosystem services, and the economies of the riparian countries (Kenya, Tanzania, Uganda, Rwanda, and Burundi) rely on their discharge, but projections of their future discharges under various climate change scenarios are not available. Here, we apply Vector Autoregressive Moving Average models with eXogenous variables (VARMAX) statistical models to project hydrological discharge for 23 river catchments for the 2015-2100 period, under three representative concentration pathways (RCPs), namely RCPs 2.6, 4.5, and 8.5. We show an intensification of future annual rainfall by 25% in the eastern and 5-10% in the western part of the basin. At higher emission scenarios, the October to December season receives more rainfall than the March to May season. Temperature projections show a substantial increase in the mean annual minimum temperature by 1.3-4.5 °C and warming in the colder season (June to September) by 1.7-2.9 °C under RCP 4.5 and 4.9 °C under RCP 8.5 by 2085. Variability in future river discharge ranges from 5-267%, increases with emission intensity, and is the highest in rivers in the southern and south eastern parts of the basin. The flow trajectories reveal no systematic trends but suggest marked inter-annual variation, primarily in the timing and magnitude of discharge peaks and lows. The projections imply the need for coordinated transboundary river management in the future.

Cite

CITATION STYLE

APA

Olaka, L. A., Ogutu, J. O., Said, M. Y., & Oludhe, C. (2019). Projected climatic and hydrologic changes to Lake Victoria Basin Rivers under three RCP emission scenarios for 2015-2100 and impacts on the water sector. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071449

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free