Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA primarily expressed in germ cells that can silence transposons at the post-transcriptional level. Accurate prediction of piRNAs remains a significant challenge. Results: We developed a program for piRNA annotation (Piano) using piRNA-transposon interaction information. We downloaded 13,848 Drosophila piRNAs and 261,500 Drosophila transposons. The piRNAs were aligned to transposons with a maximum of three mismatches. Then, piRNA-transposon interactions were predicted by RNAplex. Triplet elements combining structure and sequence information were extracted from piRNA-transposon matching/pairing duplexes. A support vector machine (SVM) was used on these triplet elements to classify real and pseudo piRNAs, achieving 95.3 ± 0.33% accuracy and 96.0 ± 0.5% sensitivity. The SVM classifier can be used to correctly predict human, mouse and rat piRNAs, with overall accuracy of 90.6%. We used Piano to predict piRNAs for the rice stem borer, Chilo suppressalis, an important rice insect pest that causes huge yield loss. As a result, 82,639 piRNAs were predicted in C. suppressalis. Conclusions: Piano demonstrates excellent piRNA prediction performance by using both structure and sequence features of transposon-piRNAs interactions. Piano is freely available to the academic community at http://ento.njau.edu.cn/Piano.html.
CITATION STYLE
Wang, K., Liang, C., Liu, J., Xiao, H., Huang, S., Xu, J., & Li, F. (2014). Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinformatics, 15(1). https://doi.org/10.1186/s12859-014-0419-6
Mendeley helps you to discover research relevant for your work.