The herbal constituents in An-Gong-Niu-Huang Wan (AGNH) protect against cinnabar-and realgar-induced hepatorenal toxicity and accumulations of mercury and arsenic in mice

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An-Gong-Niu-Huang Wan (AGNH) has been a well-known cinnabar-and realgar-containing compound recipe for cerebral diseases. Unfortunately, its clinical practice is often restrained by the specific hepatorenal toxicity of cinnabar and realgar (C + R). In previous research studies, we have found that the antioxidative and anti-inflammatory effects of its herbal constituents could mitigate the risks from the toxicity. The underlying detoxification mechanisms are still unsolved. The present study investigated the protective effects of AGNH's herbal constituents on hepatorenal injury induced by C + R. For the mice treated with C + R, the increased expression levels of sensitive biomarkers of metal exposure and hepatorenal toxicity, including metallothionein (MT) in both hepatorenal tissues and kidney induced molecule-1 (KIM-1) in the kidney, were simultaneously reduced when C + R coadministered with other herbal medicines. In addition, the contents of trivalent As (AsIII), pentavalent As (Asv), and mercury (Hg) in hepatorenal tissues of mice were also significantly reduced benefiting from the herbal constituents in AGNH. Further mechanism studies showed that the herbal constituents in AGNH could downregulate the expressions of uptake transporters (AQP9 and OAT1) and upregulate the expressions of efflux transporters (P-gp, MRP2, and MRP4) in mice intoxicated by C + R. Our results suggested that AGNH's herbal constituents protect the body against C + R-induced hepatorenal toxicity and accumulations of Hg and As, which could be associated with the reestablishment of heavy metal homeostasis and the detoxification system.

Cite

CITATION STYLE

APA

Wang, S., Xiao, X., Li, A., & Li, P. (2021). The herbal constituents in An-Gong-Niu-Huang Wan (AGNH) protect against cinnabar-and realgar-induced hepatorenal toxicity and accumulations of mercury and arsenic in mice. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/5566078

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free