The low ionic conductivity and Li+ transference number ((Formula presented.)) of solid polymer electrolytes (SPEs) seriously hinder their application in lithium-ion batteries (LIBs). In this study, a novel single-ion lithium-rich imidazole anionic porous aromatic framework (PAF-220-Li) is designed. The abundant pores in PAF-220-Li are conducive to the Li+ transfer. Imidazole anion has low binding force with Li+. The conjugation of imidazole and benzene ring can further reduce the binding energy between Li+ and anions. Thus, only Li+ moved freely in the SPEs, remarkably reducing the concentration polarization and inhibiting lithium dendrite growth. PAF-220-quasi-solid polymer electrolyte (PAF-220-QSPE) is prepared through solution casting of Bis(trifluoromethane)sulfonimide lithium (LiTFSI) infused PAF-220-Li and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP), and possessed excellent electrochemical performance. The electrochemical property are further improved by preparing all-solid polymer electrolyte (PAF-220-ASPE) via pressing-disc method, which has a high Li+ conductivity of 0.501 mS cm−1 and (Formula presented.) of 0.93. The discharge specific capacity at 0.2 C of Li//PAF-220-ASPE//LFP reached 164 mAh g−1, and the capacity retention rate is 90% after 180 cycles. This study provided a promising strategy for SPE with single-ion PAFs to achieve high-performance solid-state LIBs.
CITATION STYLE
Li, Z., Wang, L., Liu, Y., Yu, M., Liu, B., Men, Y., … Zhu, G. (2023). Single-Ion Polymer Electrolyte Based on Lithium-Rich Imidazole Anionic Porous Aromatic Framework for High Performance Lithium-Ion Batteries. Small, 19(41). https://doi.org/10.1002/smll.202302818
Mendeley helps you to discover research relevant for your work.