Functional instability allows access to DNA in longer transcription activator-like effector (Tale) arrays

8Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of "functional instability" that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states.

Cite

CITATION STYLE

APA

Schuller, K. G., Mitra, J., Ha, T., & Barrick, D. (2019). Functional instability allows access to DNA in longer transcription activator-like effector (Tale) arrays. ELife, 8. https://doi.org/10.7554/eLife.38298

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free