Abstract
The almost ubiquitously expressed ClC-2 chloride channel is activated by hyperpolarization and osmotic cell swelling. Osmotic swelling also activates a different class of outwardly rectifying chloride channels, and several reports point to a link between protein tyrosine phosphorylation and activation of these channels. This study examines the possibility that transforming growth factor-α (TGF-α) modulates ClC-2 activity in human colonic epithelial (T84) cells. TGF-α (0.17 nM) irreversibly inhibited ClC-2 current in nystatin-perforated whole cell patch-clamp experiments, whereas a superimposed reversible activation of the current was observed at 8.3 nM TGF-α. Both effects required activation of the intrinsic epidermal growth factor receptor (EGFR) tyrosine kinase activity, of phosphoinositide 3-kinase, and of protein kinase C. With microspectrofluorimetry of the pH-sensitive fluorescent dye 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, TGF-α was shown to reversibly alkalinize T84 cells at 8.3 nM but not at 0.17 nM, suggesting that 8.3 nM TGF-α-induced alkalinization activates ClC-2 current. This study indicates that ClC-2 channels are targets for EGFR signaling in epithelial cells.
Author supplied keywords
Cite
CITATION STYLE
Bali, M., Lipecka, J., Edelman, A., & Fritsch, J. (2001). Regulation of ClC-2 chloride channels in T84 cells by TGF-α. American Journal of Physiology - Cell Physiology, 280(6 49-6). https://doi.org/10.1152/ajpcell.2001.280.6.c1588
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.