Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway

50Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Isoliquiritigenin (ISL) is a flavonoid extracted from licorice root, which is known to serve important antitumor roles in numerous types of cancers; however, its effect on gastric cancer remains to be elucidated. The present study aimed to explore the roles and underlying mechanisms of ISL in MKN28 gastric cancer cells. MKN28 cell proliferation was measured using the Cell Counting Kit-8 (CCK8) assay. A Transwell assay was used to determine the effects of ISL on the migration and invasion of MKN28 cells. Apoptosis was assessed by flow cytometry, and the expression levels of apoptosis-, autophagy- and signaling pathway-related proteins were detected by western blot analysis. The results of the CCK8 assay demonstrated that ISL significantly inhibited the proliferation of MKN28 cells (P<0.05). Transwell assays demonstrated that the migration and invasion of MKN28 cells were significantly inhibited following treatment with ISL (P<0.05). Flow cytometric analysis indicated that ISL induced apoptosis of MKN28 cells. In addition, western blot analysis revealed that the ratio of microtubule-associated proteins 1A/1B light chain 3B (LC3)II/LC3I was upregulated, as was Beclin 1 expression; however, p62 was downregulated following ISL pretreatment, thus suggesting that ISL triggered autophagy in MKN28 cells. In addition, the phosphorylation levels of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were significantly reduced following ISL treatment. These results indicated that ISL may influence apoptosis and autophagy in MKN28 cells by suppressing the phosphoinositide 3-kinase/AKT/mTOR signaling pathway. In conclusion, the findings of the present study suggested that ISL may inhibit MKN28 cell proliferation, migration and invasion by inducing apoptosis and autophagy, implying potential as a therapeutic agent for gastric cancer.

Cite

CITATION STYLE

APA

Xiu-Rong, Z., Shi-Yao, W., Wen, S., & Chao, W. (2018). Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Molecular Medicine Reports, 18(3), 3429–3436. https://doi.org/10.3892/mmr.2018.9318

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free