Simulated unbound structures for benchmarking of protein docking in the Dockground resource

12Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Proteins play an important role in biological processes in living organisms. Many protein functions are based on interaction with other proteins. The structural information is important for adequate description of these interactions. Sets of protein structures determined in both bound and unbound states are essential for benchmarking of the docking procedures. However, the number of such proteins in PDB is relatively small. A radical expansion of such sets is possible if the unbound structures are computationally simulated. Results: The Dockground public resource provides data to improve our understanding of protein-protein interactions and to assist in the development of better tools for structural modeling of protein complexes, such as docking algorithms and scoring functions. A large set of simulated unbound protein structures was generated from the bound structures. The modeling protocol was based on 1 yns Langevin dynamics simulation. The simulated structures were validated on the ensemble of experimentally determined unbound and bound structures. The set is intended for large scale benchmarking of docking algorithms and scoring functions. Conclusions: A radical expansion of the unbound protein docking benchmark set was achieved by simulating the unbound structures. The simulated unbound structures were selected according to criteria from systematic comparison of experimentally determined bound and unbound structures. The set is publicly available at http://dockground.compbio.ku.edu .

Cite

CITATION STYLE

APA

Kirys, T., Ruvinsky, A. M., Singla, D., Tuzikov, A. V., Kundrotas, P. J., & Vakser, I. A. (2015). Simulated unbound structures for benchmarking of protein docking in the Dockground resource. BMC Bioinformatics, 16(1). https://doi.org/10.1186/s12859-015-0672-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free