We report on the optical and morphological properties of silica thin layers deposited by reactive RF magnetron sputtering of a SiO2 target under different oxygen to total flow ratios [r(O2) = O2/Ar, ranging from 0 to 25%]. The refractive index (n), extinction coefficient, total transmission, and total reflectance were systematically investigated, while field-emission scanning electron microscopy, atomic force microscopy, and three-dimensional (3D) average roughness data construction measurements were carried out to probe the surface morphology. Contact angle measurements were performed to assess the hydrophilicity of our coatings as a function of the oxygen content. We performed a thorough numerical analysis using 1D-solar cell capacitance simulator (SCAPS-1D) based on the measured experimental optical properties to simulate the photovoltaic (PV) device performance, where a clear improvement in the photoconversion efficiency from 25 to 26.5% was clearly observed with respect to r(O2). Finally, a computational analysis using OptiLayer confirmed a minimum total reflectance of less than 0.4% by coupling a silica layer with n = 1.415 with another high-refractive-index (i.e., >2) oxide layer. These promising results pave the way for optimization of silica thin films as efficient antireflection and self-cleaning coatings to display better PV performance in a variety of locations including a desert environment.
CITATION STYLE
Hossain, M. I., Aïssa, B., Samara, A., Mansour, S. A., Broussillou, C. A., & Benito, V. B. (2021). Hydrophilic Antireflection and Antidust Silica Coatings. ACS Omega, 6(8), 5276–5286. https://doi.org/10.1021/acsomega.0c05405
Mendeley helps you to discover research relevant for your work.