Abstract
Studies of sucrose utilization by Fusobacterium mortiferum ATCC 25557 have provided the first definitive evidence for phosphoenolpyruvate-dependent sugar:phosphotransferase activity in the family Bacteroidaceae. The phosphoenolpyruvate-dependent sucrose:phosphotransferase system and the two enzymes required for the dissimilation of sucrose 6-phosphate are induced specifically by growth of F. mortiferum on the disaccharide. Monomeric sucrose 6-phosphate hydrolase (M(r), 52,000) and a dimeric ATP-dependent fructokinase (subunit M(r), 32,000) have been purified to electrophoretic homogeneity. The physicochemical and catalytic properties of these enzymes have been examined, and the N-terminal amino acid sequences for both proteins are reported. The characteristics of sucrose 6-phosphate hydrolase and fructokinase from F. mortiferum are compared with the same enzymes from both gram-positive and gram-negative species. Butyric, acetic, and D-lactic acids are the end products of sucrose fermentation by F. mortiferum. A pathway is proposed for the translocation, phosphorylation, and metabolism of sucrose by this anaerobic pathogen.
Cite
CITATION STYLE
Thompson, J., Nguyen, N. Y., & Robrish, S. A. (1992). Sucrose fermentation by Fusobacterium mortiferum ATCC 25557: Transport, catabolism, and products. Journal of Bacteriology, 174(10), 3227–3235. https://doi.org/10.1128/jb.174.10.3227-3235.1992
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.