Abstract
Flaxseed (Linum usitatissimum L.) has several health-promoting applications as dietary food ingredient supplementation, owing to presence of high quality of oil, polyunsaturated fatty acids, high dietary fiber and protein contents. The presence of different anti-nutritional components, for example cyanogens (HCN) and tannins in meal, limits its application for food purposes. The study was conducted to observe the effect of ultrasound-assisted extraction on polysaccharide gums (PSG) yield using response surface methodology. The selected variables were sonication temperature (°C), water to meal ratio, sonication amplitude level (%), sonication pH, and sonication time (min). Ultrasound-assisted extraction significantly reduced the anti-nutritional components like HCN and tannins. The extracted PSG yield from partially defatted flaxseed meal (PDFM) samples varied to a minimum of 7.24% to a maximum of 11.04% when extraction temperature (°C) and amplitude level (%) varied from -1 to +1 and keeping all other variables constant at mean value. Physiochemical and functional properties of extracted PSG were studied. Yoghurt with different treatment combinations were prepared by supplementing flaxseed-derived PSG as stabilizer ranging from 0.25% to 1.5%, keeping baseline samples without PSG as control. Functional properties of PSG-supplemented yoghurt such as pH, syneresis, and viscosity were determined to assess the influence of PSG supplementation on yoghurt quality. In the organoleptic behavior of PSG-supplemented yoghurt, no adverse effect on the flavor have been observed, but the textural properties vary significantly among different treatments. Overall, the acceptability of 1% PSG-supplemented yoghurt was significantly higher than other treatments.
Author supplied keywords
Cite
CITATION STYLE
Akhtar, M. N., Mushtaq, Z., Ahmad, N., Khan, M. K., Ahmad, M. H., Hussain, A. I., & Imran, M. (2019). Optimal ultrasound-assisted process extraction, characterization, and functional product development from flaxseed meal derived polysaccharide gum. Processes, 7(4). https://doi.org/10.3390/pr7040189
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.