The ability to reliably measure the depth of the object surface is very important in a range of high-value industries. With the development of 3D vision techniques, RGB-D cameras have been widely used to perform the 6D pose estimation of target objects for a robotic manipulator. Many applications require accurate shape measurements of the objects for 3D template matching. In this work, we develop an RGB-D camera based on the structured light technique with gray-code coding. The intrinsic and extrinsic parameters of the camera system are determined by a calibration process. 3D reconstruction of the object surface is based on the ray triangulation principle. We construct an RGB-D sensing system with an industrial camera and a digital light projector. In the experiments, real-world objects are used to test the feasibility of the proposed technique. The evaluation carried out using planar objects has demonstrated the accuracy of our RGB-D depth measurement system.
CITATION STYLE
Tran, V. L., & Lin, H. Y. (2018). A structured light RGB-D camera system for accurate depth measurement. International Journal of Optics, 2018. https://doi.org/10.1155/2018/8659847
Mendeley helps you to discover research relevant for your work.