Abstract
We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer (RXTE) light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observed between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) h. The measured mass function, f(M2,M1,i) = 0.00203807(8) M ⊙, allows to set a lower limit of 0.17 M⊙ on the mass of the companion star, while an upper limit of 0.48 M⊙ is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency at an average rate of-(6.3 ± 1.9) × 10-14 Hz s-1. The low statistical significance of this measurement and the possible presence of timing noise hampers a firm detection of any evolution of the neutron star spin. We also present an analysis of the spectral properties of IGR J17498-2921 based on the observations performed by the Swift-X-ray Telescope and the RXTE-Proportional Counter Array between August 12 and September 22, 2011. During most of the outburst, the spectra are modeled by a power-law with an index Γ ≈ 1.7-2, while values of ≈ 3 are observed as the source fades into quiescence. © 2011 ESO.
Author supplied keywords
Cite
CITATION STYLE
Papitto, A., Bozzo, E., Ferrigno, C., Belloni, T., Burderi, L., Di Salvo, T., … Iaria, R. (2011). The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 h orbit. Astronomy and Astrophysics, 535. https://doi.org/10.1051/0004-6361/201117995
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.