This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.
CITATION STYLE
Lledó, L. D., Badesa, F. J., Almonacid, M., Cano-Izquierdo, J. M., Sabater-Navarro, J. M., Fernández, E., & Garcia-Aracil, N. (2015). Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0127777
Mendeley helps you to discover research relevant for your work.