Abstract
Multiple epidemiological models have been proposed to predict the spread of Ebola in West Africa. These models include consideration of counter-measures meant to slow and, eventually, stop the spread of the disease. Here, we examine one component of Ebola dynamics that is of ongoing concern - the transmission of Ebola from the dead to the living. We do so by applying the toolkit of mathematical epidemiology to analyze the consequences of post-death transmission. We show that underlying disease parameters cannot be inferred with confidence from early-stage incidence data (that is, they are not a identifiablea because different parameter combinations can produce virtually the same epidemic trajectory. Despite this identifiability problem, we find robustly that inferences that don't account for post-death transmission tend to underestimate the basic reproductive number - thus, given the observed rate of epidemic growth, larger amounts of post-death transmission imply larger reproductive numbers. From a control perspective, we explain how improvements in reducing post-death transmission of Ebola may reduce the overall epidemic spread and scope substantially. Increased attention to the proportion of post-death transmission has the potential to aid both in projecting the course of the epidemic and in evaluating a portfolio of control strategies.
Cite
CITATION STYLE
Weitz, J. S., & Dushoff, J. (2015). Modeling post-death transmission of Ebola: Challenges for inference and opportunities for control. Scientific Reports, 5. https://doi.org/10.1038/srep08751
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.