Abstract
Intracellular chloride ([Cl−]i) and pH (pHi) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−]i and pHi, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−]i and pHi at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−]i and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pHi and [Cl−]i in response to hypercapnia and seizure activity.
Author supplied keywords
Cite
CITATION STYLE
Sato, S. S., Artoni, P., Landi, S., Cozzolino, O., Parra, R., Pracucci, E., … Ratto, G. M. (2017). Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 114(41), E8770–E8779. https://doi.org/10.1073/pnas.1702861114
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.