The efficiency of star formation, defined as the ratio of the stellar to total (gas and stellar) mass, is observed to vary from a few percent in regions of dispersed star formation to about a third in cluster-forming cores. This difference may reflect the relative importance of magnetic fields and turbulence in controlling star formation. We investigate the interplay between supersonic turbulence and magnetic fields using numerical simulations, in a sheet-like geometry. We demonstrate that star formation with an efficiency of a few percent can occur over several gravitational collapse times in moderately magnetically subcritical clouds that are supersonically turbulent. The turbulence accelerates star formation by reducing the time for dense core formation. The dense cores produced are predominantly quiescent, with subsonic internal motions. These cores tend to be moderately supercritical. They have lifetimes long compared with their local gravitational collapse time. Some of the cores collapse to form stars, while others disperse away without star formation. In turbulent clouds that are marginally magnetically supercritical, the star formation efficiency is higher, but can still be consistent with the values inferred for nearby embedded clusters. If not regulated by magnetic fields at all, star formation in a multi-Jeans mass cloud endowed with a strong initial turbulence proceeds rapidly, with the majority of cloud mass converted into stars in a gravitational collapse time. The efficiency is formally higher than the values inferred for nearby cluster-forming cores, indicating that magnetic fields are dynamically important even for cluster formation.
CITATION STYLE
Nakamura, F., & Li, Z. (2005). Quiescent Cores and the Efficiency of Turbulence‐accelerated, Magnetically Regulated Star Formation. The Astrophysical Journal, 631(1), 411–428. https://doi.org/10.1086/432606
Mendeley helps you to discover research relevant for your work.