A novel Myc target gene, mina53, that is involved in cell proliferation

116Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Myc is a ubiquitous mediator of cell proliferation and can transactivate the expression of various genes through E-box sites. Here we report a novel gene, mina53 (Myc-induced nuclear antigen with a molecular mass of 53 kDa). The mina53 gene encodes a protein with a molecular weight of 53 kDa, which is localized in the nucleus and with part of the protein concentrated in the nucleolus. When serum-starved cells were activated by serum, the level of c-myc mRNA was elevated, and an increase in mina53 mRNA followed the elevation of c-myc mRNA. When expression of c-myc was reduced in human promyelocytic leukemia HL60 cells by phorbol 12-myristate 13-acetate, the expression of mina53 mRNA and protein was reduced. The expression of mina53 mRNA and Mina53 protein was induced by ectopic introduction of wild type c-Myc but not by a mutant c-Myc lacking the transactivation domain. When c-Myc in the c-MycER chimeric protein was activated, mina53 mRNA was increased, even in the presence of an inhibitor for protein synthesis. E-box sites are present in a region proximal to the transcription initiation sites of the mina53 gene. The gene expression from the mina53 promoter was elevated by c-Myc through E-box sites, c-Myc protein bound to the mina53 promoter region in vivo in HL60 cells in the proliferating phase but not after treatment of cells with phorbol 12-myristate 13-acetate. Specific inhibition of mina53 expression by an RNA interference method severely suppressed cell proliferation. Taken together, these results indicate that mina53 is a direct target gene of Myc, suggesting that mina53 is involved in mammalian cell proliferation.

Cite

CITATION STYLE

APA

Tsuneoka, M., Koda, Y., Soejima, M., Teye, K., & Kimura, H. (2002). A novel Myc target gene, mina53, that is involved in cell proliferation. Journal of Biological Chemistry, 277(38), 35450–35459. https://doi.org/10.1074/jbc.M204458200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free