Rose Bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers

46Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Rose Bengal adsorbed on microgranular cellulose was studied in the solid phase by total and diffuse reflectance and steady-state emission spectroscopy. A simple monomer–dimer equilibrium fitted reflectance data up to dye loadings of 4 × 10−7 mol (g cellulose)−1 and allowed calculation of monomer and dimer spectra. Further increase of dye loading resulted in the formation of higher aggregates. Observed emission and excitation spectra and quantum yields were corrected for reabsorption and reemission of luminescence, using a previously developed model, within the assumption that only monomers are luminescent [M. G. Lagorio, L. E. Dicelio, M. I. Litter and E. San Román, J. Chem. Soc., Faraday Trans., 1998, 94, 419]. An apparent increase of fluorescence quantum yield with dye loading was found, which was attributed to the occurrence of dimer fluorescence. Extension of the model to two luminescent species (i.e. monomer and dimer) yielded constant fluorescence quantum yields for the monomer, ΦM = 0.120 ± 0.004, and for the dimer, ΦD = 0.070 ± 0.006. The monomer quantum yield is close to the value found for the same dye in basic ethanol. The presence of fluorescent dimers and calculated quantum yields are supported by analysis of the excitation spectra and other experimental evidence. The possible occurrence of non-radiative energy transfer and the effect of surface charge on the properties of the dimer are analyzed. © 2004 The Royal Society of Chemistry and Owner Societies.

Cite

CITATION STYLE

APA

Rodríguez, H. B., Lagorio, M. G., & Román, E. S. (2004). Rose Bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers. Photochemical and Photobiological Sciences, 3(7), 674–680. https://doi.org/10.1039/b402484b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free