Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: A novel scaffold material for soft tissue engineering

45Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Electrospinning is a long-known polymer processing technique that has received more interest and attention in recent years due to its versatility and potential use in the field of biomedical research. The fabrication of three-dimensional (3D) electrospun matrices for drug delivery and tissue engineering is of particular interest. In the present study, we identified optimal conditions to generate novel electrospun polymeric scaffolds composed of poly-d/l-lactide and poly-l-lactide in the ratio 50:50. Scanning electron microscopic analyses revealed that the generated poly(d/l-lactide-co-l-lactide) electrospun hybrid microfibers possessed a unique porous high surface area mimicking native extracellular matrix (ECM). To assess cytocompatibility, we isolated dermal fibroblasts from human skin biopsies. After 5 days of in vitro culture, the fibroblasts adhered, migrated and proliferated on the newly created 3D scaffolds. Our data demonstrate the applicability of electrospun poly(d/l-lactide-co-l-lactide) scaffolds to serve as substrates for regenerative medicine applications with special focus on skin tissue engineering. © 2010 The Author(s).

Cite

CITATION STYLE

APA

Kluger, P. J., Wyrwa, R., Weisser, J., Maierle, J., Votteler, M., Rode, C., … Schenke-Layland, K. (2010). Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: A novel scaffold material for soft tissue engineering. Journal of Materials Science: Materials in Medicine, 21(9), 2665–2671. https://doi.org/10.1007/s10856-010-4128-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free