Segmentation-based cardiomegaly detection based on semi-supervised estimation of cardiothoracic ratio

5Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The successful integration of neural networks in a clinical setting is still uncommon despite major successes achieved by artificial intelligence in other domains. This is mainly due to the black box characteristic of most optimized models and the undetermined generalization ability of the trained architectures. The current work tackles both issues in the radiology domain by focusing on developing an effective and interpretable cardiomegaly detection architecture based on segmentation models. The architecture consists of two distinct neural networks performing the segmentation of both cardiac and thoracic areas of a radiograph. The respective segmentation outputs are subsequently used to estimate the cardiothoracic ratio, and the corresponding radiograph is classified as a case of cardiomegaly based on a given threshold. Due to the scarcity of pixel-level labeled chest radiographs, both segmentation models are optimized in a semi-supervised manner. This results in a significant reduction in the costs of manual annotation. The resulting segmentation outputs significantly improve the interpretability of the architecture’s final classification results. The generalization ability of the architecture is assessed in a cross-domain setting. The assessment shows the effectiveness of the semi-supervised optimization of the segmentation models and the robustness of the ensuing classification architecture.

Cite

CITATION STYLE

APA

Thiam, P., Kloth, C., Blaich, D., Liebold, A., Beer, M., & Kestler, H. A. (2024). Segmentation-based cardiomegaly detection based on semi-supervised estimation of cardiothoracic ratio. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56079-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free