The Organogermanium Compound 3-(Trihydroxygermyl) Propanoic Acid (THGP) Suppresses Inflammasome Activation Via Complexation with ATP

10Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Inflammasome activity is a key indicator of inflammation. The inflammasome is activated by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), which activate the p38-NF-κB pathway and promote IL-1β transcription (signaling step 1). Next, extracellular adenosine triphosphate (ATP) activates the inflammasome (a protein complex consisting of a signal recognition protein, an adapter protein, and Caspase-1) and secretion of inflammatory cytokines such as IL-1β (signaling step 2). Inflammasome activation causes excessive inflammation, leading to inflammasome-active diseases such as atherosclerosis and type 2 diabetes. A hydrolysate of the organogermanium compound Ge-132, 3-(Trihydroxygermyl) propanoic acid (THGP) can form a complex with a cis-diol structure. We investigated the inhibitory effect of THGP on inflammasome activity in human THP-1 monocytes. THGP inhibited IL-1β secretion and caspase-1 activation (signaling step 2) in an ATP-dependent manner. On the other hand, THGP did not suppress IL-1β secretion induced by only lipopolysaccharide (LPS) stimulation. In addition, as IL-6 is an ATP-independent inflammatory cytokine, THGP did not decrease its secretion. THGP also suppressed pyroptosis, which is a caspase-1 activity-dependent form of cell death. Therefore, THGP is expected to become a new therapeutic or prophylactic agent for inflammasome-associated diseases.

Cite

CITATION STYLE

APA

Azumi, J., Shimada, Y., Takeda, T., Aso, H., & Nakamura, T. (2022). The Organogermanium Compound 3-(Trihydroxygermyl) Propanoic Acid (THGP) Suppresses Inflammasome Activation Via Complexation with ATP. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232113364

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free