(3S)-Acetoin and (2S, 3S)-2, 3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3S)-acetoin and (2S, 3S)-2, 3-butanediol from meso-2, 3-butanediol. First, E. coli co-expressing (2R, 3R)-2, 3-butanediol dehydrogenase, NADH oxidase and Vitreoscilla hemoglobin was developed for (3S)-acetoin production from meso-2, 3-butanediol. Maximum (3S)-acetoin concentration of 72.38 g/L with the stereoisomeric purity of 94.65% was achieved at 24 h under optimal conditions. Subsequently, we developed another biocatalyst co-expressing (2S, 3S)-2, 3-butanediol dehydrogenase and formate dehydrogenase for (2S, 3S)-2, 3-butanediol production from (3S)-acetoin. Synchronous catalysis together with two biocatalysts afforded 38.41 g/L of (2S, 3S)-butanediol with stereoisomeric purity of 98.03% from 40 g/L meso-2, 3-butanediol. These results exhibited the potential for (3S)-acetoin and (2S, 3S)-butanediol production from meso-2, 3-butanediol as a substrate via whole-cell biocatalysis.
CITATION STYLE
He, Y., Chen, F., Sun, M., Gao, H., Guo, Z., Lin, H., … Yuan, J. (2018). Efficient (3S)-acetoin and (2S, 3S)-2, 3-butanediol production from meso-2, 3-butanediol using whole-cell biocatalysis. Molecules, 23(3). https://doi.org/10.3390/molecules23030691
Mendeley helps you to discover research relevant for your work.