Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion

53Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Background: Stem cells/progenitors are central to the development of cell therapy approaches for vascular ischemic diseases. The crucial step in rescuing tissues from ischemia is improvement of vascularization that can be achieved by promoting neovascularization. Endothelial progenitor cells (EPCs) are the best candidates for developing such an approach due to their ability to self-renew, circulate and differentiate into mature endothelial cells (ECs). Studies showed that intravenously administered progenitors isolated from bone marrow, peripheral or cord blood home to ischemic sites. However, the successful clinical application of such transplantation therapy is limited by low quantities of EPCs that can be generated from patients. Hence, the ability to amplify the numbers of autologous EPCs by long term in vitro expansion while preserving their angiogenic potential is critically important for developing EPC based therapies. Therefore, the objective of this study was to evaluate the capacity of cord blood (CB)-derived AC133+ cells to differentiate, in vitro, towards functional, mature endothelial cells (ECs) after long term in vitro expansion. Methodology: We systematically characterized the properties of CB AC133+ cells over the 30 days of in vitro expansion. During 30 days of culturing, CB AC133+ cells exhibited significant growth potential that was manifested as 148-fold increase in cell numbers. Flow cytometry and immunocytochemistry demonstrated that CB AC133+ cells' expression of endothelial progenitor markers was not affected by long term in vitro culturing. After culturing under EC differentiation conditions, cells exhibited high expression of mature ECs markers, such as CD31, VEGFR-2 and von Willebrand factor, as well as the morphological changes indicative of differentiation towards mature ECs. In addition, throughout the 30 day culture cells preserved their functional capacity that was demonstrated by high uptake of DiI fluorescently conjugated-acetylated-low density lipoprotein (DiI-Ac-LDL), in vitro and in vivo migration towards chemotactic stimuli and in vitro tube formation. Conclusions: These studies demonstrate that primary CB AC133+ culture contained mainly EPCs and that long term in vitro conditions facilitated the maintenance of these cells in the state of commitment towards endothelial lineage. © 2010 Janic et al.

References Powered by Scopus

Isolation of putative progenitor endothelial cells for angiogenesis

8158Citations
N/AReaders
Get full text

Angiogenesis in life, disease and medicine

3086Citations
N/AReaders
Get full text

Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1

2369Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Cell therapy of peripheral arterial disease: From experimental findings to clinical trials

200Citations
N/AReaders
Get full text

Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer

156Citations
N/AReaders
Get full text

Vascular Mimicry: A Novel Neovascularization Mechanism Driving Anti-Angiogenic Therapy (AAT) Resistance in Glioblastoma

118Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Janic, B., Guo, A. M., Iskander, A. S. M., Varma, N. R. S., Scicli, A. G., & Arbab, A. S. (2010). Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS ONE, 5(2). https://doi.org/10.1371/journal.pone.0009173

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 16

53%

Researcher 11

37%

Professor / Associate Prof. 2

7%

Lecturer / Post doc 1

3%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 18

55%

Medicine and Dentistry 7

21%

Engineering 5

15%

Biochemistry, Genetics and Molecular Bi... 3

9%

Save time finding and organizing research with Mendeley

Sign up for free