Cardiac hypertrophy is a complex process induced by the activation of multiple signaling pathways. We previously reported that anacardic acid (AA), a histone acetyltransferase (HAT) inhibitor, attenuates phenylephrine (PE)-induced cardiac hypertrophy by downregulating histone H3 acetylation at lysine 9 (H3K9ac). Unfortunately, the related upstream signaling events remained unknown. The mitogen-activated protein kinase (MAPK) pathway is an important regulator of cardiac hypertrophy. In this study, we explored the role of JNK/ MAPK signaling pathway in cardiac hypertrophy induced by PE. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. This study showed that p-JNK directly interacts with HATs (P300 and P300/CBP-associated factor, PCAF) and alters H3K9ac. In addition, both the JNK inhibitor SP600125 and the HAT inhibitor AA attenuated p-JNK overexpression and H3K9ac hyperacetylation by inhibiting P300 and PCAF during PE-induced cardiomyocyte hypertrophy. Moreover, we demonstrated that both SP600125 and AA attenuate the overexpression of cardiac hypertrophy-related genes (MEF2A, ANP, BNP, and β-MHC), preventing cardiomyocyte hypertrophy and dysfunction. These results revealed a novel mechanism through which AA might protect mice from PE-induced cardiomyocyte hypertrophy. In particular, AA inhibits the effects of JNK signaling on HATs-mediated histone acetylation, and could therefore be used to prevent and treat pathological cardiac hypertrophy.
CITATION STYLE
Peng, B., Peng, C., Luo, X., Wu, S., Mao, Q., Zhang, H., & Han, X. (2021). JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine. PLoS ONE, 16(12 December). https://doi.org/10.1371/journal.pone.0261388
Mendeley helps you to discover research relevant for your work.