Disulfide-crosslinked hyaluronan-gelatin sponge: Growth of fibrous tissue in vivo

80Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The modification of hyaluronan (HA) and gelatin using dithiobis(propanoic dihydrazide) (DTP) has provided two thiolated macromolecular components of the extracellular matrix (ECM), specifically HA-DTPH and gelatin-DTPH. Blends of these thiolated ECM components were crosslinked in air to form hydrogels that were interpenetrating disulfide-crosslinked networks. Lyophilization of the hydrogels afforded sponge-like macroporous scaffolds suitable for cell attachment and proliferation. Increasing percentages of gelatin-DTPH (0, 25, 50, and 75%) were blended with HA-DTPH, and the resulting sponges were evaluated in vitro and in vivo as scaffolds for tissue engineering by seeding with human tracheal scar (HTS) fibroblasts. While cells failed to attach and grow in HA-only sponges, the gelatin-modified HA sponges promoted cell adhesion, proliferation, and spreading in vitro. Optimal attachment and growth was observed with 50% gelatin-HA sponges. Cell attachment to the gelatin-HA sponge could be blocked by preincubation of cells with a soluble fibronectin peptide Gly-Arg-Gly-Asp (GRGD). Finally, HTS fibroblast-seeded gelatin-HA sponges were implanted into the flanks of nude mice and evaluated at 2 and 8 weeks postimplantation. The sponges were fully biocompatible and new fibrous tissue formed, gradually replacing the sponge-like scaffold. The gelatin-HA sponges act as synthetic, macroporous, covalent mimics of the ECM and constitute novel scaffolds for cell growth and tissue augmentation. © 2003 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Liu, Y., Shu, X. Z., Gray, S. D., & Prestwich, G. D. (2004). Disulfide-crosslinked hyaluronan-gelatin sponge: Growth of fibrous tissue in vivo. Journal of Biomedical Materials Research - Part A, 68(1), 142–149. https://doi.org/10.1002/jbm.a.10142

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free