Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers

110Citations
Citations of this article
166Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Organic light-emitting diodes (OLEDs) under constant current operation suffer from a decrease of luminance accompanied by an increase of driving voltage. We report a way to greatly improve the stability of OLEDs having a green emitter exhibiting thermally activated delayed fluorescence (TADF), (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl) isophthalonitrile (4CzIPN), by introducing ultrathin (1 to 3 nm) interlayers of 8-hydroxyquinolinato lithium (Liq) between hole-blocking layer and its surrounding emissive and electron-transport layers. Under constant current operation starting at a luminescence of 1,000 cd/m 2 , the time to reach 90% of initial luminance (LT 90 ) increased eight times, resulting in LT 90 =1,380 hours after insertion of the interlayers. Combining this new concept and mixed host system, LT 95 was further extended to 1315 hours that is 16 times of reference device. This is the best value reported for TADF-based OLEDs and is comparable to the operational lifetimes of well-established phosphorescence-based OLEDs. Thermally stimulated current measurements showed that the number of deep charge traps was reduced with the insertion of the ultrathin Liq interlayer, indicating that reducing the number of deep traps is important for improving the operational lifetime and that exciton-polaron annihilation may be a source of the device degradation.

Cite

CITATION STYLE

APA

Tsang, D. P. K., & Adachi, C. (2016). Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Scientific Reports, 6. https://doi.org/10.1038/srep22463

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free