Abstract
Object detection is a challenging task in aerial images, where many objects have large aspect ratios and are densely arranged. Most anchor-based rotating detectors assign anchors for ground-truth objects by a fixed restriction of the rotation Intersection-over-Unit(IoU) between anchors and objects, which directly follow horizontal detectors. Due to many directional objects with a large aspect ratio, the object-anchor IoU is heavily influenced by the angle, which may cause few anchors assigned for some ground-truth objects. In this study, we propose an anchor selection method based on sample balance assigning anchors adaptively, which we name the Self-Adaptive Anchor Selection (A2S-Det) method. For each ground-truth object, A2 S-Det selects a set of candidate anchors by horizontal IoU. Then, an adaptive threshold module is adopted on the set of candidate anchors, which calculates a boundary of these candidate anchors aiming to keep a balance between positive and negative anchors. In addition, we propose a coordinate regression of relative reference(CR3) module to precisely regress the rotating bounding box. We test our method on a public aerial image dataset, and prove better performance than many other one-stage detectors and two-stage detectors, achieving the mAP of 70.64. An efficiency anchor matching method helps the detector achieve better performance for objects with large aspect ratios.
Author supplied keywords
Cite
CITATION STYLE
Xiao, Z., Wang, K., Wan, Q., Tan, X., Xu, C., & Xia, F. (2021). A2S-det: Efficiency anchor matching in aerial image oriented object detection. Remote Sensing, 13(1), 1–21. https://doi.org/10.3390/rs13010073
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.