A new approach by optical coherence tomography for elucidating biofilm formation by emergent Candida species

17Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

The majority of microorganisms present a community lifestyle, establishing biofilm ecosystems. However, little is known about its formation in emergent Candida species involved in catheter-related infections. Thus, various techniques may be used in the biofilm detection to elucidate structure and clinical impact. In this context, we report the ability of emergent Candida species (Candida haemulonii, C. lusitaniae, C. pelliculosa, C.guilliermondii, C. famata and C. ciferrii) on developing well structured biofilms with cell viability and architecture, using optical coherence tomography (OCT). This new approach was compared with XTT analyses and Scanning Electron Microscopy (SEM). A positive correlation between oxidative activity (XTT) and OCT results (r = 0.8752, p < 0.0001) was observed. SEM images demonstrated cells attachment, multilayer and morphologic characteristics of the biofilm structure. C. lusitaniae was the emergent species which revealed the highest scattering extension length and oxidative metabolism when evaluated by OCT and XTT methods, respectively. Herein, information on C. ciferri biofilm structure were presented for the first time. The OCT results are independently among Candida strains and no species-specific pattern was observed. Our findings strongly contribute for clinical management based on the knowledge of pathogenicity mechanisms involving emergent yeasts.

Cite

CITATION STYLE

APA

Leite De Andrade, M. C., Soares De Oliveira, M. A., Dos Santos, F. D. A. G., Ximenes Vilela, P. D. B., Da Silva, M. N., Macêdo, D. P. C., … Neves, R. P. (2017). A new approach by optical coherence tomography for elucidating biofilm formation by emergent Candida species. PLoS ONE, 12(11). https://doi.org/10.1371/journal.pone.0188020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free