Enriched Photoelectrochemical Performance of Phosphate Doped BiVO 4 Photoelectrode by Coupling FeOOH and rGO

  • Shi Q
  • Song X
  • Wang H
  • et al.
19Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bismuth vanadate is a promising photoanode with a set of intrinsic limitations for water oxidation and photoelectrochemical degradation of organic pollution. FeOOH/P:BiVO4/rGO composite with a considerably small charge-transfer resistance was successfully developed by doping the BiVO4 lattice with phosphate (P:BiVO4), photo-depositing FeOOH nanoparticles on P:BiVO4 nanoparticles, and grafting reduced graphene oxide (rGO) onto the surface of P:BiVO4, in that order. This composite photoelectrode significantly improves photoelectrochemical performance originating from its effective suppression on electron-hole recombination and charge transfer at the semiconductor/electrolyte interface. The photoelectrocatalysts were systematically characterized by FTIR, XPS, SEM, TEM, UV-vis and XRD. The characterization results show that FeOOH/P:BiVO4/rGO consisted of spherical agglomerates comprising a large number of P:BiVO4 nanoparticles with an average size of approximately 10 nm. FeOOH nanoparticles were successfully loaded onto the surface of P:BiVO4 nanoparticles, and rGO layers with a thickness of approximately 4 nm were coated onto the P:BiVO4 particles. The enhanced photoelectrochemical properties were observed using linear sweep voltammetry. The mechanism underlying the observed photoelectrocatalytic activity enhancement was determined using Mott-Schottky analysis and electrochemical impedance spectroscopy. The photocurrent density of FeOOH/P:BiVO4/rGO in a Na2SO4 solution with 2,4-dichlorophenol (2,4-DCP) at 0.6 VAg/AgCl is approximately 100 times higher than that of P:BiVO4; the onset potentials of FeOOH/P:BiVO4/rGO (0.008 VAg/AgCl) is 5 times lower than that of P:BiVO4 (0.043 VAg/AgCl). It is suggested that FeOOH/P:BiVO4/rGO obtains the highest photoelectrocatalytic performance for 2,4-DCP degradation. The proposed mechanism is that the synergistic effect between FeOOH and rGO can alleviate two main limitations of P:BiVO4: suppression on the bulk recombination and interfacial recombination formed at the P:BiVO4-FeOOH junction and effective charge transfer at the semiconductor/electrolyte interface.

Cite

CITATION STYLE

APA

Shi, Q., Song, X., Wang, H., & Bian, Z. (2018). Enriched Photoelectrochemical Performance of Phosphate Doped BiVO 4 Photoelectrode by Coupling FeOOH and rGO. Journal of The Electrochemical Society, 165(4), H3018–H3027. https://doi.org/10.1149/2.0021804jes

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free