Leveling is a process used to minimize the plate defects including flatness imperfections and uniformity of internal stress in the plate industry. It plays an important role in delivering the desired material properties and product standards required. This paper presents a new analytical method for the curvature analysis of plate during the leveling process. The explicit expressions of the curvature integration model were derived in detail by an assumption of ignoring the residuals stress superimposed effect (IRSSE). The curvature analysis procedure was given about how to choose different expression to build the explicit curvature integration equations which were solved with fsolve function in Matlab. The contact angles and bending curvatures could be firstly analyzed in 0.7–0.8 second even though with random initial values. Then, they were initialized to the procedure by considering the residual stress effect and it only needed 3–4 seconds in 2 iteration steps to get the final solution. It was found that the result by IRSSE is close enough to the solution of the method by considering residual stress effect (CRSSE). The curvature and trajectory distribution by IRSSE and CRSSE just reflects on the last leveling areas because of the residual stress accumulative error effect. The analytical methods by IRSSE and CRSSE have the advantage of iteration speed and solution accuracy, respectively. Therefore, the proposed combined method is potential to the future roller intermeshes optimization research.
CITATION STYLE
Liu, Z., Luo, Y., Wang, Y., & Liao, T. W. (2018). A new curvature analytical method in plate leveling process. ISIJ International, 58(6), 1094–1101. https://doi.org/10.2355/isijinternational.ISIJINT-2017-738
Mendeley helps you to discover research relevant for your work.