Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19. Namun kebijakan tersebut menuai tanggapan pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya.
CITATION STYLE
Akbar, M. N., Darmatasia, D., Mustikasari, M., & Syahwal, M. (2021). ANALISIS CLUSTERING TEKS TANGGAPAN MASYARAKAT DI TWITTER TERHADAP PEMBATASAN SOSIAL BERSKALA BESAR MENGGUNAKAN ALGORITMA K-MEANS. Jurnal INSYPRO (Information System and Processing), 6(1). https://doi.org/10.24252/insypro.v6i1.23325
Mendeley helps you to discover research relevant for your work.