Coordinating mitochondrial translation with assembly of the OXPHOS complexes

15Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.

Cite

CITATION STYLE

APA

Kremer, L. S., & Rehling, P. (2024, June 1). Coordinating mitochondrial translation with assembly of the OXPHOS complexes. Human Molecular Genetics. Oxford University Press. https://doi.org/10.1093/hmg/ddae025

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free