Studying the effect of light incidence angle on photoelectric parameters of solar cells by simulation

20Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

It is crucial to examine the dependence of photoelectric parameters of solar cells on the light incidence angle. In the present study, two solar cell models have been developed using the Sentaurus Technology Computer-Aided Design software package. The light spectrum AM1.5 has been directed on the frontal surface of solar cells at different angles. It has been found that the angular coefficient of the photoelectric parameters of a solar cell with nanoparticles included, is two times more than that of a simple solar cell. Besides, it has been found that the efficiency of platinum nanoparticles induced solar cells is 2.15 times greater than simple solar cell efficiency. When the light incidence angle has been varied from 0 to 60 degrees, the short-circuit current has changed by 11% for simple solar cells and by 10% for solar cells with nanoparticles. Further, it has been observed that the variation of power for simple solar cells is 12.5%, while it is 10.5% for solar cells with nanoparticles. In addition, the short-circuit current of solar cells with nanoparticles has been found to be linear within a light incidence angle ranging from 0 to 60 degrees.

Cite

CITATION STYLE

APA

Gulomov, J., Aliev, R., Mirzaalimov, A., Mirzaalimov, N., Kakhkhorov, J., Rashidov, B., & Temirov, S. (2021). Studying the effect of light incidence angle on photoelectric parameters of solar cells by simulation. International Journal of Renewable Energy Development, 10(4), 731–736. https://doi.org/10.14710/ijred.2021.36277

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free