Mesh-type and voxel-based computational phantoms comprise the current state of the art for internal dose assessment via Monte Carlo simulations but excel in different aspects, with mesh-type phantoms offering advantages over their voxel counterparts in terms of their flexibility and realistic representation of detailed patient- or subjectspecific anatomy. We have developed PARaDIM (pronounced "paradigm": Particle and Heavy Ion Transport Code System-Based Application for Radionuclide Dosimetry in Meshes), a freeware application for implementing tetrahedral mesh-type phantoms in absorbed dose calculations. It considers all medically relevant radionuclides, including α, β, γ, positron, and Auger/conversion electron emitters, and handles calculation of mean dose to individual regions, as well as 3-dimensional dose distributions for visualization and analysis in a variety of medical imaging software. This work describes the development of PARaDIM, documents the measures taken to test and validate its performance, and presents examples of its uses. Methods: Human, small-animal, and cell-level dose calculations were performed with PARaDIM and the results compared with those of widely accepted dosimetry programs and literature data. Several tetrahedral phantoms were developed or adapted using computer-aided modeling techniques for these comparisons. Results: For human dose calculations, agreement of PARaDIM with OLINDA 2.0 was good - within 10%-20% for most organs - despite geometric differences among the phantoms tested. Agreement with MIRDcell for cell-level S value calculations was within 5% in most cases. Conclusion: PARaDIM extends the use of Monte Carlo dose calculations to the broader community in nuclear medicine by providing a user-friendly graphical user interface for calculation setup and execution. PARaDIM leverages the enhanced anatomic realism provided by advanced computational reference phantoms or bespoke image-derived phantoms to enable improved assessments of radiation doses in a variety of radiopharmaceutical use cases, research, and preclinical development. PARaDIM can be downloaded freely at www.paradim-dose.org.
CITATION STYLE
Carter, L. M., Crawford, T. M., Sato, T., Furuta, T., Choi, C., Kim, C. H., … Lewis, J. S. (2019). PARaDIM: A PHITS-Based monte carlo tool for internal dosimetry with tetrahedral mesh computational phantoms. Journal of Nuclear Medicine, 60(12), 1802–1811. https://doi.org/10.2967/jnumed.119.229013
Mendeley helps you to discover research relevant for your work.